
Source of Acquisition
NASA Goddard Space Flight Center

Autonomic Computing for Spacecraft Ground Systems

Zhenping Li, Cetin Savkli
Lockheed Martin Space Operations
7500 Greenway Center, Suite 200

Lori Jones
NASNGoddard Space Flight Center
Sldg 32, Room N220C

Greenbelt, MD 20770
Zhenping. Li@,lmco. corn

Abstract

Autonomic computing for spacecrafi ground
systems increases the system reliability and reduces
the cost of spacecraft operations and software
maintenance. In this paper, we present an autonomic
computing solution for spacecrafi ground systems at
NASA Goddard Space Flight Center (GSFC), which
consists of an open standard for a message oriented
architecture referred to as the GMSEC architecture
(Goddard Mission Services Evolution Center), and an
autonomic computing tool, the Criteria Action Table
(CAT). This solution has been used in many upgraded
ground systems for NASA 's missions, and provides a
framework for developing solutions with higher
autonomic maturity.

1. Introduction

The concept of autonomic computing is the ability
of computing systems to manage themselves based on
high level objectives fi-om management. It is inspired
by the human autonomic system that maintains an
optimal internal state through self regulation, while
adapting to the changing environment. The vision [I]
of autonomic computing is necessitated by the
explosive growth in network applications and
information services that are increasingly complex,
dynamic, and heterogeneous, which have led to
profound changes in almost every aspect of our lives.
Using autonomic computing to manage technologies
will be crucial in meeting the challenges of
increasingly complex computing systems that may
reach the limit of the human capability to manage and
maintain in the near future. This is particularly critical
when systems require a timely and decisive response to
the demands of rapidly changing environments. There
have been considerable efforts in both industry and the
academic world to investigate autonomic computing
concepts, architecture, as well as applications [2].

Spacecraft ground systems provide an important
testing ground for the autonomic computing concept. A

Greenbelt, MD 20771
Lori. L. Jones@,nasa. gov

spacecraft ground system is complex: it involves many
processes and subsystems working together, such as
the flight dynamics subsystem, data processing
subsystem, scheduling and planning subsystem, and
command, control and communication subsystems. It
is distributed: the subsystems and processes within a
system are generally in different geographical locations
and interact and communicate with each other through
networks. It is heterogeneous: a ground system
generally consists of mainfkame or legacy systems for
data processing and product generation and
workstations for command, control, and
communications on different platforms and operating
systems. It also runs in real time, which has a high
standard of requirements for reliability, availability,
maintainability, as well as performance.

The next generation spacecraft will be empowered
with new capabilities to generate new products for
remote sensing, as well as imaging with much higher
data rates and volume, such as the next generation of
the geostationary operational environmental satellites
[3]. The ground system and operations will become
more complex and demanding, and will process
spacecraft data at the daily scale of tera-bytes or even
higher in the future. Autonomic computing for
spacecraft ground systems will not only provide the
long term solution to confront this increasing
complexity, but will also bring short term benefits to
current spacecraft operations as well. Specifically, it
increases the system reliability and security, enables
automation and autonomy at the system level, and thus
reduces the costs for system maintenance and
operations.

An autonomic computing system generally consists
of managed elements and autonomic elements. The
managed element is generally a functional unit, a
hardware or software system that provides certain
services. The autonomic element captures the signals
fiom the managed elements on its health and
operational status, analyzes the data based on the
existing knowledge and high level objectives from
management, and plans and carries out the appropriate
actions for self-configwing, self-healing, self-

protection, and self-optimization. There are
considerable scientific and engineering challenges to
bring this concept into the reality. For spacecraft
ground systems, autonomic computing requires an
architectural solution to create an autonomic
computing environment, and tools or middleware to
provide autonomic computing services. The
architectural solution for autonomic computing should
provide an open standard for the interfaces and
protocols for the interactions and communications
among the components in a heterogeneous
environment. It should also enable self awareness,
which should make the detailed knowledge of its
components, operational status, as well as other
necessary information, available for the decision
making process in the autonomic elements. The
autonomic computing tool should be scalable, efficient,
flexible, and extensible to provide core services at the
system level. The focus of this paper is to present the
ongoing efforts at Goddard Space Flight Center
(GSFC) to define a reference architecture referred to as
the GMSEC architecture [4] and to develop a GMSEC
component, CAT, for providing autonomic computing
services by Lockheed Martin Space Operations.

2. GMSEC Architecture

The GMSEC architecture is a solution for
spacecraft ground systems that facilitates new and cost
effective approaches for system development,
integration, testing, and operations to meet the growing
challenges in the current and future NASA missions.

The main concept of the GMSEC architecture is
component based with a centralized message oriented
middleware (MOM) shown in Figure 1. MOM
provides the message services common to all system
components, such as the security, message filtering and
routing, and guaranteed delivery. The message services
include the point-to-point and multicast services
through the publishhubscribe and requesthesponse
schemes. The applications or components
communicate with each other through a standard
application programming interface (MI) to MOM
using messages. Each message includes a specific
subject name that categorizes the message.
Components publish messages by subject categories.
The components receive messages by providing the
subject names to the message middleware. The
message delivery mechanism by MOM can be either
synchronous or asynchronous.

The GMSEC architecture represents a natural
extension from existing ground systems, in which the
interfaces and communications among the subsystems
and processes are implemented through TCP/IP socket

connections that are mostly system dependent and
proprietary. Using the middleware solution to provide
the common services to all subsystems enables the
component development to concentrate on its business
logic. The divide and conquer strategy simplifies both
component and middleware development. It also
provides the flexibility to allow missions to choose
components and middleware that meet their own
specific requirements.

ground system

,The GMSEC architecture standardizes the interfaces
and protocols for the message deliveries through
MOM, whose standard is open and non-proprietary.
Experience in the Java enterprise computing standard,
J2EE, that defines an open standard interface between
the container and enterprise application component,
shows that the open standard facilitates the
technological innovations and infusions in the market
place for both component and middleware
development. This leads to the rapid development,
deployment, and testing of enterprise applications at a
much lower cost. The granularity of the coupling
among components under the GMSEC architecture is
higher than that in the standard component
architecture, which leads to considerably simpler
component integration and testing.

The GMSEC standardization efforts are two fold:
the open standard API for the programming interface
between the component and MOM that allows the
point-to-point and multi-cast communications with
certain levels of quality-of-service, and the standard
schema for event message, telemetry, directive, data
values, data transfer, and other types of messages. The
GMSEC standard event message definition schema
generally consists of a message header and a content
section, which has gone beyond the traditional “time,
type, fixed length text string” format, and provides
much more content to allow new system monitoring
capabilities. Key message definitions and reference
implementations of the API in some commonly used

programming languages, such as Java, C++, and Perl,
have been developed and released [4]. The reference
implementation of the API converts proprietary
interfaces of several MOM (middleware) tools on the
market into the open standard interfaces on Windows,
Linux, and UNIX operating systems.

To provide an autonomic computing environment at
the system level, the GMSEC architecture has gone
beyond the standardization of the interfaces and the
message formats by establishing requirements for
GMSEC compliant components: every component
under the GMSEC architecture should be able to 1)
publish event messages of its own operational status
for real time monitoring and archiving, and 2) accept
and process GMSEC standard directive messages.
Components within the system may exercise discretion
in what event messages they publish and what services
they provide based on the number of attributes,
including the source and authorization of the requestor.
The expanded message definition, as well as the real
time event log that covers every component in the
system, enables system level monitoring and provides
a very broad context to analyze the system
performance. It also provides a very rich environment
for data analysis and data mining to identify the
correlations among the system components and system
trends, and to anticipate the potential system problems.
These requirements lead to a self-aware and interactive
system that provides a standard for autonomic elements
to interact with the managed elements, and enables the
development of autonomic computing tools.

3. CAT Development under the GMSEC
Architecture

CAT is a component under the GMSEC architecture
with standard interfaces to MOM, and also a part of
spacecraft ground systems. Thus, it should meet the
general requirements for a component in both the
GMSEC architecture and ground systems. These
requirements are: the flexibility to manage any
GMSEC compliant component, the scalability to
monitor a system with many subsystems and processes,
the extensibility to incorporate additional capabilities
in the hture, and the reliability and efficiency to
perform in a real time environment. In addition, CAT
should also be able to incorporate the knowledge
accumulated in the existing spacecraft operations,
which is particularly important for upgraded ground
systems. This requires rigorous testing of autonomic
computing tools. GMSEC has deveIoped a laboratory
for testing and simulating GMSEC compliant
components, which primarily tests the robustness,
reliability, and performance of a GMSEC component.

The event analysis and monitoring tool, GMSEC
Reusable Events Analysis Toolkit (GREAT) [5] , has
been developed for real time event monitoring,
archiving, report generation, and event message
generation for simulation and testing purposes.
GREAT provides the necessary support to test and
monitor the accuracy of the decision making process in
an autonomic computing, real time environment.

3.1. The CAT Architecture

To meet these requirements, the system design and
implementation of CAT are based on the best
engineering practices and lessons learned in
developing component and middleware solutions for
both spacecraft ground systems and enterprise
applications. CAT is implemented with Java and the
latest J2EE technologies to ensure portability across
operating systems, as well as rapid development fiom
significant code re-use.

A layered approach for the CAT architecture is
shown in Figure 2, which consists of three layers: the
network layer, the service layer, and the configuration
layer. The network layer captures all messages in
MOM and forwards them to the service layer. At the
same time, the network layer also accepts the actions
generated by the autonomic agents in the service layer,
and publishes them as GMSEC standard messages to
MOM. The message could be a directive message to a
specific component to change its behavior, or simply
an event log message for monitoring, archiving and
debugging purposes.

Figure 2 CAT architecture

The configuration layer is an XML file that can be
configured during deployment or integration. The
configuration file contains the domain specific
information, rules and policies, as well as the
knowledge base for a managed element. It also
includes the necessary network information for the

network layer to interface with the message
middleware. CAT also contains a tool that provides
the ability to create, modify, and manage this
configuration file through a GUI. The configuration
file provides the inputs for the autonomic agents in the
service layer that controls life cycles, internal states,
and the decision making processes of autonomic
agents, as well as determines the number of the
autonomic elements at run-time. The configuration
setup approach for the domain specific layer allows the
operations personnel and management to setup the
decision making rules based on their accumulated
knowledge in spacecraft operations, which is important
for upgrading the existing spacecraft ground systems.
The schema for the CAT configuration will be
discussed in detail in the next section.

The service layer is a component container, referred
to as the agent pool. The components within an agent
pool are monitor classes. A monitor class manages a
service provided by components or entities within a
system, and contains a group of autonomic agents that
have the same lifecycles, rules for data analyses and
decision making, and actions associated with decisions.
Each agent within a monitor class manages a service
provided by a single component or entity, has its own
internal state, and runs as an independent thread.

The monitor class manages the lifecycles of its
agents and provides the filtering capability to route the
relevant agent in the monitor class. The agent pool
provides mechanisms for fine grained collaboration
among the agents withiin the same agent pool.

Life cycle management is very important in
maintaining the efficiency of CAT and ensuring its
scalability. An autonomic agent is created dynamically
by an incoming message that meets certain criteria, and
it can be terminated if the internal states of an agent
satisfy a set of rules. Once an agent is terminated, it is
removed &om the agent pool by a pre-defined action.
The lifetime for some agents could be very short, such
as the agents that monitor the limit violations of
spacecraft mnemonics, while the agent for monitoring
the health and safety of a component in a ground
system will remain active as long as the corresponding
component remains active.

Message filtering and routing ensure that the
autonomic agents only process the relevant incoming
messages from their managed elements. This is
particularly important since the message traffic in the
middleware can be heavy in real time, and most of the
messages in the traffic are not relevant for a particular
agent in the agent pool.

CAT provides the mechanisms for both fine and
coarse grained collaborations among the agents. The
fine grained collaboration enables direct access of the
internal states of one agent by the other agent within

the same agent pool, while the coarse grained
collaboration among agents in the same agent pool or
different agent pools is achieved by exchanging the
information through the event message publishing and
monitoring scheme. For example, one agent could
publish its own internal states to the message
middleware as the event log message once its internal
states have been updated, while the other agent could
set up the configuration to monitor these states, and
extract the data accordingly. The agent collaborations
are very important at the system level monitoring to
identify the correlations among the different
subsystems, which provide comprehensive information
on the system health and performance. For example,
the power level of a spacecraft depends on whether it is
facing the sun or in the dark, as spacecraft generally '
use solar power. The collaboration between the agent
that monitors the power level on the spacecraft
instruments and the agent that monitors the positions of
the spacecraft in the flight dynamics subsystem will
provide complete contextual information on the
spacecraft power status.

3.2. Data Processing within an Autonomic
Agent

The data processing and decision making processes
in an autonomic element generally have the local and
global control loops [Z] based on Ashby's Ultra-stable
system. The local loop handles known environmental
states based on the knowledge embedded in the
elements, which maps the environmental states to its
behaviors. When an environmental state changes, the
autonomic element will automatically generate actions
based on the existing knowledge and policies. The
global loop can handle the unknown environment
states. It generally involves machine learning, artificial
intelligence andor human intervention, which in turn
generates the necessary knowledge base for the local
loop. The same architecture has been used in the
Learning Classifier Systems proposed by Holland [6] .
One could create agents specifically dedicated to both
local and global loops in CAT. The agent collaboration
allows local agents to access the internal states of the
global agents to modify the existing rules and policies.

The basis of the data processing and decision
making in CAT is a standard representation, on which
the data analyses and decision making can be
performed. Generally, a set of attributes is used to
represent the internal states of an autonomic agent,
which can have integer, float, Boolean, and string
types. The attributes can also have the customized time
type, which are used regularly in a real time
environment. The attributes for a given agent are

classified into two groups: the original attributes {a:}

and derived attributes {a; y . The original attributes
are extracted directly from the incoming messages
using the pattern matching technology. The values of

derived attributes {a; r are updated by

where the integer k represents the kth iteration of the
update triggered by the incoming messages with

specified patterns. The function f({a:}, {a; y)couId
be a simple mathematical expression, such as the
trigonometry functions or exponential functions, or it
could also be a routine for machine learning
algorithms, such as the decision tree algorithm. This
depends on whether the routine or function is in the
CAT data processing library. Currently, a
mathematical library containing some basic
mathematical functions is included in CAT. This
framework could be easily extended to include libraries
containing the advanced machine learning algorithms,
adaptive algorithms, or an inference engine.

Both derived attributes {a;)k and original

attributes {a: } represent the actionable data, on which
an informed decision could be made. The decisions
made in an autonomic agent are based on rules having
both original attributes and derived attributes, and each
rule is associated with several actions. There could be
several rules for a given agent that corresponds to
different internal states, which may require different
responses or actions. The rule based autonomic agents
are widely used for monitoring and steering scientific
applications [7]. CAT provides the capability to
perform additional data processing and analysis so that
the data would be actionable, and the informed
decision can be made based on the management rules
and policies.

Figure 3 shows the data processing and decision
making process in CAT. It starts with the extraction of
the data from the fields of the incoming messages
using the pattern matching technology to generate the
original attributes. The incoming messages with
specified patterns may also trigger the update of the
values of derived attributes through the user defined
rules, the mathematical manipulation, or other data
analysis routines. The combination of the original and
derived attri6utes forms the actionable data. The
decision making combines the’actionable data with the
management policies or rules, which leads to the
actions sent to the network layer.

Figure 3. Data Processing in CAT

3.3. The Configuration Schema

The configuration file defines data processing,
decision making, and the lifecycle of a particular agent.
The basic unit for a CAT configuration is the monitor
class, which defines a group of autonomic agents that
manage the same service provided by different
components. There could be as many monitor classes
for a configuration as needed. A monitor class
contains the following main sub-elements:

The constraint element provides the filtering
mechanism for an agent pool to process only the
messages relevant to the attributes defined in the
monitor class, and also ensures the messages to be
processed come fiom the managed elements. This
element is an optional feature to improve the
processing efficiency.
The attribute element defines both original
attributes and the derived attributes. The element
defines how the values of original attributes are
obtained from the incoming messages.
The monitor trigger element defines the rules for
the agent pool to create an autonomic agent. It
represents a logical relationship between the
attribute value being extracted from the incoming
message and the critical value defined by the user.
The primary key is used to uniquely identify an
autonomic agent within the agent pool, and it is
created by combining the values of the original
attributes in an agent. There is a one-to-many
relationship between monitor classes and
autonomic agents, since there may be several
components that provide the same services.
The action element provides the information
necessary for autonomic agents to send either
directive messages or log messages to the
specified destination through the message

middleware, which is defined by the GMSEC
standard.
The rule element defines a set of conditions for
both original and derived attributes, and action
names that link to the action definition. The
conditions are defined as the logical expressions
for the relationship between the attributes
extracted and the critical values defined by the
user.
The function element defines how a derived
attribute is updated fiom the existing attributes
through a combination of mathematical
expressions, or an existing algorithm and rules.

In practice, not all elements listed here are needed
for a given monitor class. If there is a one-to-one
correspondence between the monitor class and an
autonomic agent, the primary key entry is not needed.
The monitor trigger element is not needed if the
message has only one pattern monitored by the monitor
class. For a simple monitor that requires no data
processing, the equation element is also not needed.

For example, the configuration for a monitor class
that monitors the heartbeat messages fiom components
is shown in Figure 4. The availability of the mission
critical component for continuous operations on a 2417
basis is one of the crucial requirements for spacecraft

field and specified subfields to be processed by the
agents. The two sub-elements within the same class
constraint element have an "AND" relationship: if both
patterns appear in their specified subfields of the
incoming message at the same time, the requirements
for processing the message are satisfied. The schema
allows more than one class constraint element. The
class constraint elements in a monitor class have an
"OR" relationship. The primary key for corresponding
autonomic agents is the component name that appears
in the "COMPONENT" subfield of heartbeat
messages. When an agent pool receives a heartbeat
message fi-om a new component, it automatically
creates a new agent with the new primary key to
monitor its heartbeat message. The required sub-
element in the rule elements represents a logical
expression; if the time since receiving the last heartbeat
message is larger than 5 seconds, the action with the
name G 1 E - W will be executed. The time variable
t-sinceReceivingLastMsg is an internal attribute, which
automatically resets when a new heartbeat message
fiom the same component is received. The GIVE-UP
action in the action element identifies the type of
message as a GMSEC event log message, the
destination of the message, and the entries in the
specified message fields. The expressions
${attribute-name) will be replaced with the values of

<monitor-class name= "HeartBeatMonitor " enabled = "true's
<subject-constraint>
<requirement attribute="SUBJECT" operator="-" value=". *C2CX.
</su bject-constraint>
<class-constraint>
<requirement attribute= "MESSAGE-SUBTYPE" operator="-" value=". *C2CX *"b
<requirement attribute= "COMPONENT" operator="!-" value= "CAT"b
</class-constraint>
<primary-key>
<key order="O"~cornponent~/key~
</primay-key>
<attributes>
<attribute name= '%omponent " type= "String " field='%ONENT"pattern= "(: *) "b
</attributes>
<rule name= "GIVE-UP" enabled= "true">
<act> GNE_UP</act>
<requirement attribute="t-sinceReceivingLastMsg" operator=">" value ="5'/>
</rule>
<action narne="GWE-UP">
<destination type="LOG'>GMSEC. DEMO. LOG. CAT</destination>
<textfield="SE VERITY">l</text>
<textfield="MSG-T~'>~equency=$~t-sinceReceiving~astMsg~ component=${componenG Heart beat missing </text>
<textfield="COMPONENT'> CAT</text>
</action>
</monitor-class>
Figure 4. The Configuration for a Heartbeat Monitor

ground systems. The subject and class constraints
provide the filtering mechanism, which identLfy the
messages with the specified patterns in their subject

the attributes in the agent when the GMSEC log
message is generated. The schema allows more than
one action to be specified in a given rule. In practice,

the actions include the directive to be sent to a backup
component for the failover procedure, the log message,
and an exit action that terminates the agent and
removes it fi-om the agent pool.

The heartbeat monitor class listed here is very
simple and generic, but at the same time, very
powerful. The agent pool manages the heartbeat
autonomic agents for the whole system and is adaptive
to the changing environment: it automatically creates
an agent when the heartbeat message from a new
component is detected, takes the failover action and
then removes the agent fi-om the agent pool in case of a
component failure. As the failed component is
generally off-line, the corresponding agent is no longer
needed.

4. Autonomic Computing in Spacecraft
Operations

Both the GMSEC architecture and the autonomic
tool, CAT, have been deployed in many NASA
missions in order to increase automation and
autonomy, as well as reduce operational costs. The
GMSEC architecture and the CAT tool have become a
standard for ground systems in current and future
NASA missions.

The autonomic computing solution for ground
systems is used to replace operations personnel for
monitoring and steering spacecraft operations. The
self-configuring and self-healing capabilities of
autonomic elements are crucial for fully autonomous or
“lights out” operations. In the upgraded ground system
for the Tropical Rainfall Measuring Mission (TRMM)
spacecraft, CAT is used to monitor the health and
safety data from the spacecraft. Flight operations
personnel are informed if an error is detected, which
may indicate a failure of either hardware or software
on the spacecraft. Generally, there are hundreds or
even thousands of parameters and attributes referred to
as mnemonics that describe the health and safety of
each hardwarelsoftware item on a spacecraft. Creating
one agent for each mnemonic is simply not practical
and inefficient; the combination of agents and a
generic monitor class has reduced 180 rules to around
40 rules in CAT, and enables much more efficient
processing in real-time. CAT is also used to monitor
the heartbeats fi-om mission critical components and to
initiate a failover operation in case of a component
failure.

As users get more familiar with CAT and its
capabilities, more sophisticated scenarios for
increasing the automation in their operations are being
implemented. As part of the ground system automation
effort for the Earth Observing System @OS) satellite

Terra, CAT performs the decision making to configure
the ground system components for data acquisition and
commanding before, during, and after the contact
between the satellite and the ground stations. In
particular, CAT will be performing the tasks normally
performed by operators during the execution of
procedures. Currently, the Terra procedures that are
executed to configure the ground equipment for
spacecraft contacts require operator inputs 2t various
decision points during execution. These decision points
will be monitored and executed by CAT in the new
ground system. The same services for self-healing in
the TRMM ground system will also be provided in
Terra.

The actionable data obtained through data analysis
in an autonomic agent provides the basis for decision
making not only for the autonomic agents, but also for
management as well. One could configure an agent that
uses the data analysis capability to monitor system
wide events for statistical collections and other useful
data, and these data can be archived by defining an
action to send a directive message to the archive
component in the system. This is called business
intelligence in enterprise applications. The summary
report for spacecraft and ground activities can be
generated automatically for management.

The architectural solution and autonomic computing
concept have also been used in the ground system for
the Small Explorer (SMEX) missions, which controls a
constellation of small scientific spacecraft.
Additionally, the upgrade of the ground systems for the
other EOS satellites, the Aqua and Aura missions, is
planned in the near future. The infusion of the
GMSEC architecture and autonomic computing in
other new mission ground systems is also planned.

5. Summary: Increasing Autonomic
Maturity

The architectural blueprint for autonomic
computing by IBM proposed an autonomic computing
maturity model in 5 levels [SI: 1) basic, 2) managed,
3) predictive, 4) adaptive, and 5) autonomic. The
capabilities provided by CAT under the GMSEC
architecture suggest that the autonomic maturity for the
current solution is between the predictive and adaptive
levels. Increasing the autonomic maturity requires
improvements in both the GMSEC architecture and
CAT. The current GMSEC architecture does not go far
enough in the standardization process to enable
autonomic computing with a higher maturity.

To increase the autonomic maturity at the
architectural level, the GMSEC architecture should be
upgraded to the service-oriented GMSEC architecture

(SOGA). The component re-use paradigm in the
current GMSEC architecture will be replaced by the
service re-use paradigm. A service received fi-om one
component is obtained through a “locate, negotiate,
and lease” procedure, which is also called a “find bind
and execute” scheme. Thus, the service re-use enables
completely plug and play components.

The open standard for the message delivery through
the middleware under the GMSEC architecture is a
very important step toward achieving SOGA. To
upgrade the GMSEC architecture into a SOGA, a new
standard ontology and protocol are needed for services,
as well as quality of service, service discovery, and a
service contract in the GMSEC standard messages. In
addition, a service registry based on these standards
needs to be developed as part of SOGA.

To ensure system awareness and an interactive
environment for autonomic computing, the common
attributes that represent the run-time properties of a
service need to be defined and standardized. Thus,
SOGA should require that a compliant component for a
given service publish these attributes as the standard
event messages when the values of these attributes
change, and process directives that can change these
run-time properties. Both messages for publishing
these attributes and directive messages for changing
component attributes should be standardized as well.

The monitor classes defmed in CAT are autonomic
elements that manage services. The same service in
SOGA can be provided by several components with
different qualities of service. Considering the heartbeat
monitor class example, publ ishg the heartbeat
message by each component in a system could be
regarded as a universal service in a SOGA
environment. Thus, the monitor class manages the
heartbeat service regardless of the specifics of a
component, and adapts to the changing environment.
Because the heartbeat service in the GMSEC
architecture is a standard, the same configuration can
be used in any GMSEC compliant system, which
makes it more adaptive, generic, and portable. The
standardized service in SOGA will standardize monitor
classes as services, which allows them to be re-used
fi-om one mission to another without significant
changes.

The standardized event and directive messages for
attributes in a service make it possible to define system
level attributes for its overall performance, which
could be functions of the attributes of different services
in a system. Therefore, an optimal performance
boundary could be specified by management or an
administrator as overall objectives.

The machine learning algorithm and optimization
algorithm could be introduced on this platform to
establish the relationship between the optimal
performance boundary, that could generally be multi-
objective, and the attributes of services. When a new
service component is connected with the message
middleware, the autonomic agent could be created
automatically, and the service attributes configured
based on the optimal boundary.

There are still considerable scientific and
engineering challenges ahead for an autonomic
computing system. The GMSEC architecture and the
autonomic computing tool, CAT, presented here are an
important and significant step toward an autonomic
computing solution for spacecraft ground systems.
This approach will provide some useful lessons in
developing autonomic computing solutions for other
enterprise application systems.

6. References

[11 Paul Horn, “Autonomic Computing: IBM’s Perspective
on the State of Information Technology”; httw://www-
I.ibm.com/autonomic., Oct. 2001. JefEey 0 Kephart and
David M. Chess, “The Vision of Autonomic Computing”,
IEEE Computer 35 (1); 41, 2003.

[2] Manish Parashar and S a l k Hariri, “Autonomic
Computing: An Overview”, UPP 2004, Mont Saint-Michel,
France, Editors: J.-P. Bangtre et al. LNCS, Springer Verlag,
Vol. 3566, pp. 247 - 259,2005 and references therein.

[3]

[4]
further information.

See http://www.osd.noaa.govl for detailed information.

See GMSEC project, http://gmsec.gsfc.nasa.gov for

[5] Zhenping Li, Cetin Savkli, and Dan Smith, “Increasing
The Operational Value of Event Messages”, Proceedings of
5fh International Symposium On Reduce the Cost of
Spacecraft Ground System and Operations, July 8-12, 2003,
Pasadena, California.

[6]
Biology, eds. R. Rosen and F.M. Shell, Plenum, 1976.

J. H. Holland, “Adaptation”, Progress in Theoretical

[7] Hua Liu and Manish Parashar, “Rule-based Monitoring
and Steering of Distributed Scientific Applications”,
International Journal of High Performance Computing and
Networking, issue 1, Inderscience, 2005.

[SI II3M Corporation. An Architectural Blueprint for
Autonomic Computing, h~://www-03.ibm.com/autonomic
/librarv.shtml. April, 2003.

